Find the amplitude, the period, and the frequency of the graph. Then write an equation for the sine function for the graph.
1.

[A] $1,90^{\circ}, \frac{1}{4}, y=\sin \frac{1}{4} x$
[B] $1,45^{\circ}, 4, y=\sin 4 x$
[C] $\frac{1}{2}, 90^{\circ}, 4, y=\frac{1}{2} \sin 4 x$
[D] $\frac{1}{2}, 45^{\circ}, \frac{1}{4}, y=\frac{1}{2} \sin \frac{1}{4} x$
2.

[A] $1,90^{\circ}, 4, y=\sin 4 x$
[B] $2,90^{\circ}, \frac{1}{4}, y=2 \sin \frac{1}{4} x$
[C] $1,45^{\circ}, \frac{1}{4}, y=\sin \frac{1}{4} x$
[D] $2,45^{\circ}, 4, y=2 \sin 4 x$

Find the amplitude, the period, and the frequency of the graph. Then write an equation for the sine function for the graph.
3.

[A] $\frac{5}{2}, 45^{\circ}, 4, y=\frac{5}{2} \sin 4 x$
[B] $\frac{5}{4}, 45^{\circ}, \frac{1}{4}, y=\frac{5}{4} \sin \frac{1}{4} x$
[C] $\frac{5}{2}, 90^{\circ}, \frac{1}{4}, y=\frac{5}{2} \sin \frac{1}{4} x$
[D] $\frac{5}{4}, 90^{\circ}, 4, y=\frac{5}{4} \sin 4 x$
4.

[A] $\frac{3}{2}, 90^{\circ}, 2, y=\frac{3}{2} \sin 2 x$
[B] $\frac{3}{4}, 90^{\circ}, \frac{1}{2}, y=\frac{3}{4} \sin \frac{1}{2} x$
[C] $\frac{3}{4}, 180^{\circ}, 2, y=\frac{3}{4} \sin 2 x$
[D] $\frac{3}{2}, 180^{\circ}, \frac{1}{2}, y=\frac{3}{2} \sin \frac{1}{2} x$

Find the amplitude, the period, and the frequency of the graph. Then write an equation for the sine function for the graph.
5.

[A] $2,90^{\circ}, 2, y=2 \sin 2 x$
[B] $1,90^{\circ}, \frac{1}{2}, y=\sin \frac{1}{2} x$
[C] $1,180^{\circ}, 2, y=\sin 2 x$
[D] $2,180^{\circ}, \frac{1}{2}, y=2 \sin \frac{1}{2} x$
6.

[A] $\frac{5}{2}, 180^{\circ}, \frac{1}{2}, y=\frac{5}{2} \sin \frac{1}{2} x$
[B] $\frac{5}{4}, 90^{\circ}, \frac{1}{2}, y=\frac{5}{4} \sin \frac{1}{2} x$
[C] $\frac{5}{2}, 90^{\circ}, 2, y=\frac{5}{2} \sin 2 x$
[D] $\frac{5}{4}, 180^{\circ}, 2, y=\frac{5}{4} \sin 2 x$

Find the amplitude, the period, and the frequency of the graph. Then write an equation for the sine function for the graph.
7.

[A] $1,90^{\circ}, 2, y=\sin 2 x$
[B] $\frac{1}{2}, 90^{\circ}, \frac{1}{2}, y=\frac{1}{2} \sin \frac{1}{2} x$
[C] $\frac{1}{2}, 180^{\circ}, 2, y=\frac{1}{2} \sin 2 x$
[D] $1,180^{\circ}, \frac{1}{2}, y=\sin \frac{1}{2} x$
8.

[A] $\frac{3}{4}, 45^{\circ}, \frac{1}{4}, y=\frac{3}{4} \sin \frac{1}{4} x$
[B] $\frac{3}{2}, 90^{\circ}, \frac{1}{4}, y=\frac{3}{2} \sin \frac{1}{4} x$
[C] $\frac{3}{4}, 90^{\circ}, 4, y=\frac{3}{4} \sin 4 x$
[D] $\frac{3}{2}, 45^{\circ}, 4, y=\frac{3}{2} \sin 4 x$

Find the amplitude, the period, and the frequency of the graph. Then write an equation for the sine function for the graph.
9.

[A] $\frac{3}{2}, 180^{\circ}, 2, y=\frac{3}{2} \sin 2 x$
[B] $\frac{3}{2}, 90^{\circ}, \frac{1}{2}, y=\frac{3}{2} \sin \frac{1}{2} x$
[C] $3,90^{\circ}, 2, y=3 \sin 2 x$
[D] $3,180^{\circ}, \frac{1}{2}, y=3 \sin \frac{1}{2} x$
10.

[A] $\frac{3}{2}, 45^{\circ}, \frac{1}{4}, y=\frac{3}{2} \sin \frac{1}{4} x$
[B] $3,45^{\circ}, 4, y=3 \sin 4 x$
[C] $\frac{3}{2}, 90^{\circ}, 4, y=\frac{3}{2} \sin 4 x$
[D] $3,90^{\circ}, \frac{1}{4}, y=3 \sin \frac{1}{4} x$
11. The function $d=8 \cos \frac{2 \pi}{3} t$ describes a simple harmonic motion, where d is the distance an object travels in t units of time. What is the time required for one complete cycle?
[A] $\frac{1}{3}$
[B] 8
[C] 3
[D] $\frac{2 \pi}{3}$
12. The function $d=10 \cos 6 t$ describes a simple harmonic motion, where d is the distance an object travels in t units of time. What is the maximum displacement of the object from its resting position?
[A] -10
[B] $\frac{\pi}{3}$
[C] 6
[D] 10
13. The function $d=7 \cos 2 t$ describes a simple harmonic motion, where d is the distance an object travels in t units of time. What is the frequency?
[A] $\frac{1}{\pi}$
[B] 7
[C] 2
[D] π
14. The function $d=11 \cos 8 t$ describes a simple harmonic motion, where d is the distance an object travels in t units of time. What is the maximum displacement of the object from its resting position?
[A] 11
[B] 8
[C] $\frac{\pi}{4}$
[D] -11
15. The function $d=-5 \cos 4 t$ describes a simple harmonic motion, where d is the distance an object travels in t units of time. What is the time required for one complete cycle?
[A] $\frac{2}{\pi}$
[B] 4
[C] $\frac{\pi}{2}$
[D] -5
16. The function $d=-4 \cos \frac{2 \pi}{5} t$ describes a simple harmonic motion, where d is the distance an object travels in t units of time. What is the maximum displacement of the object from its resting position?
[A] -4
[B] 4
[C] 5
[D] $\frac{2 \pi}{5}$
17. The function $d=-12 \cos 3 t$ describes a simple harmonic motion, where d is the distance an object travels in t units of time. What is the frequency?
[A] -12
[B] $\frac{3}{2 \pi}$
[C] 3
[D] $\frac{2 \pi}{3}$
18. The function $d=-6 \cos 6 t$ describes a simple harmonic motion, where d is the distance an object travels in t units of time. What is the time required for one complete cycle?
[A] 6
[B] -6
[C] $\frac{3}{\pi}$
[D] $\frac{\pi}{3}$
19. The function $d=-9 \cos 2 t$ describes a simple harmonic motion, where d is the distance an object travels in t units of time. What is the maximum displacement of the object from its resting position?
[A] -9
[B] 9
[C] 2
[D] π
20. The function $d=2 \cos 8 t$ describes a simple harmonic motion, where d is the distance an object travels in t units of time. What is the time required for one complete cycle?
[A] $\frac{4}{\pi}$
[B] 2
[C] $\frac{\pi}{4}$
[D] 8
21. The function $d=7 \cos 3 t$ describes a simple harmonic motion, where d is the distance (in meters) an object travels in t seconds. What is the frequency?
[A] 7 cycles/second
[B] 3 cycles/second
[C] $\frac{3}{2 \pi}$ cycle / second
[D] $\frac{2 \pi}{3}$ cycles/second
22. The function $d=-6 \cos 2 t$ describes a simple harmonic motion, where d is the distance (in meters) an object travels in t seconds. What is the maximum displacement of the object from its resting position?
[A] $\pi \mathrm{m}$
[B] $\frac{1}{\pi} \mathrm{~m}$
[C] 2 m
[D] 6 m
23. The function $d=12 \cos 8 t$ describes a simple harmonic motion, where d is the distance (in meters) an object travels in t seconds. What is the maximum displacement of the object from its resting position?
[A] 12 m
[B] $\frac{4}{\pi} \mathrm{~m}$
[C] $\frac{\pi}{4} \mathrm{~m}$
[D] 8 m
24. The function $d=11 \cos \pi t$ describes a simple harmonic motion, where d is the distance (in meters) an object travels in t seconds. What is the frequency?
[A] 2 cycles/second
[B] π cycles/second
[C] $\frac{1}{2}$ cycle / second
[D] 11 cycles/second
25. The function $d=-2 \cos 6 t$ describes a simple harmonic motion, where d is the distance (in meters) an object travels in t seconds. What is the time required for one complete cycle?
[A] $\frac{\pi}{3} \mathrm{sec}$
[B] 6 sec
[C] 2 sec
[D] $\frac{3}{\pi} \mathrm{sec}$
26. The function $d=-10 \cos 3 t$ describes a simple harmonic motion, where d is the distance (in meters) an object travels in t seconds. What is the time required for one complete cycle?
[A] 3 sec
[B] $\frac{2 \pi}{3} \mathrm{sec}$
[C] 10 sec
[D] $\frac{3}{2 \pi} \mathrm{sec}$
27. The function $d=3 \cos 2 t$ describes a simple harmonic motion, where d is the distance (in meters) an object travels in t seconds. What is the maximum displacement of the object from its resting position?
[A] 2 m
[B] $\frac{1}{\pi} \mathrm{~m}$
[C] 3 m
[D] $\pi \mathrm{m}$
28. The function $d=-9 \cos 8 t$ describes a simple harmonic motion, where d is the distance (in meters) an object travels in t seconds. What is the time required for one complete cycle?
[A] 9 sec
[B] $\frac{4}{\pi} \mathrm{sec}$
[C] 8 sec
[D] $\frac{\pi}{4} \mathrm{sec}$
29. The function $d=-5 \cos \frac{\pi}{2} t$ describes a simple harmonic motion, where d is the distance (in meters) an object travels in t seconds. What is the maximum displacement of the object from its resting position?
[A] 5 m
[B] $\frac{1}{4} \mathrm{~m}$
[C] 4 m
[D] $\frac{\pi}{2} \mathrm{~m}$
30. The function $d=12 \cos 2 t$ describes a simple harmonic motion, where d is the distance (in meters) an object travels in t seconds. What is the time required for one complete cycle?
31. The function $d=8 \cos 4 t$ describes a simple harmonic motion, where d is the distance (in meters) an object travels in t seconds. What is the maximum displacement of the object from its resting position?
32. The function $d=-7 \cos 6 t$ describes a simple harmonic motion, where d is the distance (in meters) an object travels in t seconds. What is the frequency?
33. The function $d=-4 \cos \frac{\pi}{3} t$ describes a simple harmonic motion, where d is the distance (in meters) an object travels in t seconds. What is the time required for one complete cycle?
34. The function $d=-6 \cos 3 t$ describes a simple harmonic motion, where d is the distance (in meters) an object travels in t seconds. What is the maximum displacement of the object from its resting position?
35. The function $d=-10 \cos 8 t$ describes a simple harmonic motion, where d is the distance (in meters) an object travels in t seconds. What is the frequency?
36. The function $d=9 \cos 2 t$ describes a simple harmonic motion, where d is the distance (in meters) an object travels in t seconds. What is the frequency?
37. The function $d=5 \cos 4 t$ describes a simple harmonic motion, where d is the distance (in meters) an object travels in t seconds. What is the maximum displacement of the object from its resting position?
38. The function $d=2 \cos 6 t$ describes a simple harmonic motion, where d is the distance (in meters) an object travels in t seconds. What is the time required for one complete cycle?
39. The function $d=11 \cos \pi t$ describes a simple harmonic motion, where d is the distance (in meters) an object travels in t seconds. What is the time required for one complete cycle?

