

3. [A] $\frac{5}{2}$, 45°, 4, $y = \frac{5}{2} \sin 4x$ [B] $\frac{5}{4}$, 45°, $\frac{1}{4}$, $y = \frac{5}{4} \sin \frac{1}{4} x$ [C] $\frac{5}{2}$, 90°, $\frac{1}{4}$, $y = \frac{5}{2} \sin \frac{1}{4} x$ [D] $\frac{5}{4}$, 90°, 4, $y = \frac{5}{4} \sin 4x$ 4. [A] $\frac{3}{2}$, 90°, 2, $y = \frac{3}{2} \sin 2x$ [B] $\frac{3}{4}$, 90°, $\frac{1}{2}$, $y = \frac{3}{4} \sin \frac{1}{2}x$ [C] $\frac{3}{4}$, 180°, 2, $y = \frac{3}{4} \sin 2x$ [D] $\frac{3}{2}$, 180°, $\frac{1}{2}$, $y = \frac{3}{2}\sin\frac{1}{2}x$

11. The function $d = 8 \cos \frac{2\pi}{3} t$ describes a simple harmonic motion, where *d* is the distance an object travels in *t* units of time. What is the time required for one complete cycle?

[A]
$$\frac{1}{3}$$
 [B] 8 [C] 3 [D] $\frac{2\pi}{3}$

- 12. The function $d = 10 \cos 6t$ describes a simple harmonic motion, where *d* is the distance an object travels in *t* units of time. What is the maximum displacement of the object from its resting position?
 - [A] -10 [B] $\frac{\pi}{3}$ [C] 6 [D] 10
- 13. The function $d = 7 \cos 2t$ describes a simple harmonic motion, where *d* is the distance an object travels in *t* units of time. What is the frequency?
 - [A] $\frac{1}{\pi}$ [B] 7 [C] 2 [D] π
- 14. The function $d = 11 \cos 8t$ describes a simple harmonic motion, where *d* is the distance an object travels in *t* units of time. What is the maximum displacement of the object from its resting position?
 - [A] 11 [B] 8 [C] $\frac{\pi}{4}$ [D] -11
- 15. The function $d = -5\cos 4t$ describes a simple harmonic motion, where *d* is the distance an object travels in *t* units of time. What is the time required for one complete cycle?
 - [A] $\frac{2}{\pi}$ [B] 4 [C] $\frac{\pi}{2}$ [D] -5
- 16. The function $d = -4\cos\frac{2\pi}{5}t$ describes a simple harmonic motion, where *d* is the distance an object travels in *t* units of time. What is the maximum displacement of the object from its resting position?
 - [A] -4 [B] 4 [C] 5 [D] $\frac{2\pi}{5}$
- 17. The function $d = -12 \cos 3t$ describes a simple harmonic motion, where *d* is the distance an object travels in *t* units of time. What is the frequency?
 - [A] -12 [B] $\frac{3}{2\pi}$ [C] 3 [D] $\frac{2\pi}{3}$
- 18. The function $d = -6 \cos 6t$ describes a simple harmonic motion, where *d* is the distance an object travels in *t* units of time. What is the time required for one complete cycle?
 - [A] 6 [B] -6 [C] $\frac{3}{\pi}$ [D] $\frac{\pi}{3}$

- 19. The function $d = -9 \cos 2t$ describes a simple harmonic motion, where *d* is the distance an object travels in *t* units of time. What is the maximum displacement of the object from its resting position?
 - [A] -9 [B] 9 [C] 2 [D] π
- 20. The function $d = 2 \cos 8t$ describes a simple harmonic motion, where *d* is the distance an object travels in *t* units of time. What is the time required for one complete cycle?
 - [A] $\frac{4}{\pi}$ [B] 2 [C] $\frac{\pi}{4}$ [D] 8
- 21. The function $d = 7 \cos 3t$ describes a simple harmonic motion, where d is the distance (in meters) an object travels in t seconds. What is the frequency?
 - [A] 7 cycles/second [B] 3 cycles/second [C] $\frac{3}{2\pi}$ cycle/second [D] $\frac{2\pi}{3}$ cycles/second
- 22. The function $d = -6 \cos 2t$ describes a simple harmonic motion, where *d* is the distance (in meters) an object travels in *t* seconds. What is the maximum displacement of the object from its resting position?
 - [A] π m [B] $\frac{1}{\pi}$ m [C] 2 m [D] 6 m
- 23. The function $d = 12 \cos 8t$ describes a simple harmonic motion, where *d* is the distance (in meters) an object travels in *t* seconds. What is the maximum displacement of the object from its resting position?
 - [A] 12 m [B] $\frac{4}{\pi}$ m [C] $\frac{\pi}{4}$ m [D] 8 m
- 24. The function $d = 11 \cos \pi t$ describes a simple harmonic motion, where d is the distance (in meters) an object travels in t seconds. What is the frequency?
 - [A] 2 cycles/second [B] π cycles/second [C] $\frac{1}{2}$ cycle/second [D] 11 cycles/second

25. The function $d = -2 \cos 6t$ describes a simple harmonic motion, where *d* is the distance (in meters) an object travels in *t* seconds. What is the time required for one complete cycle?

[A]
$$\frac{\pi}{3}$$
 sec [B] 6 sec [C] 2 sec [D] $\frac{3}{\pi}$ sec

26. The function $d = -10 \cos 3t$ describes a simple harmonic motion, where d is the distance (in meters) an object travels in t seconds. What is the time required for one complete cycle?

[A] 3 sec [B]
$$\frac{2\pi}{3}$$
 sec [C] 10 sec [D] $\frac{3}{2\pi}$ sec

- 27. The function $d = 3 \cos 2t$ describes a simple harmonic motion, where *d* is the distance (in meters) an object travels in *t* seconds. What is the maximum displacement of the object from its resting position?
 - [A] 2 m [B] $\frac{1}{\pi}$ m [C] 3 m [D] π m
- 28. The function $d = -9 \cos 8t$ describes a simple harmonic motion, where *d* is the distance (in meters) an object travels in *t* seconds. What is the time required for one complete cycle?

[A] 9 sec [B] $\frac{4}{\pi}$ sec [C] 8 sec [D] $\frac{\pi}{4}$ sec

- 29. The function $d = -5\cos\frac{\pi}{2}t$ describes a simple harmonic motion, where *d* is the distance (in meters) an object travels in *t* seconds. What is the maximum displacement of the object from its resting position?
 - [A] 5 m [B] $\frac{1}{4}$ m [C] 4 m [D] $\frac{\pi}{2}$ m
- 30. The function $d = 12 \cos 2t$ describes a simple harmonic motion, where d is the distance (in meters) an object travels in t seconds. What is the time required for one complete cycle?
- 31. The function $d = 8 \cos 4t$ describes a simple harmonic motion, where *d* is the distance (in meters) an object travels in *t* seconds. What is the maximum displacement of the object from its resting position?
- 32. The function $d = -7 \cos 6t$ describes a simple harmonic motion, where *d* is the distance (in meters) an object travels in *t* seconds. What is the frequency?

- 33. The function $d = -4 \cos \frac{\pi}{3} t$ describes a simple harmonic motion, where *d* is the distance (in meters) an object travels in *t* seconds. What is the time required for one complete cycle?
- 34. The function $d = -6 \cos 3t$ describes a simple harmonic motion, where *d* is the distance (in meters) an object travels in *t* seconds. What is the maximum displacement of the object from its resting position?
- 35. The function $d = -10\cos 8t$ describes a simple harmonic motion, where d is the distance (in meters) an object travels in t seconds. What is the frequency?
- 36. The function $d = 9 \cos 2t$ describes a simple harmonic motion, where d is the distance (in meters) an object travels in t seconds. What is the frequency?
- 37. The function $d = 5 \cos 4t$ describes a simple harmonic motion, where d is the distance (in meters) an object travels in t seconds. What is the maximum displacement of the object from its resting position?
- 38. The function $d = 2 \cos 6t$ describes a simple harmonic motion, where *d* is the distance (in meters) an object travels in *t* seconds. What is the time required for one complete cycle?
- 39. The function $d = 11 \cos \pi t$ describes a simple harmonic motion, where *d* is the distance (in meters) an object travels in *t* seconds. What is the time required for one complete cycle?